Author Archives: Sean P. Kane

ClinCalc DrugStats: Most Commonly Prescribed Medications in 2021

ClinCalc has released the latest edition of the DrugStats database, featuring “The Top 200 Drugs of 2021”. DrugStats offers complementary access to estimated prescription drug utilization data for the United States. With this data set, users can discern patterns in prescribing habits and access an evidence-based, reputable “top 200 drugs” (or “top 300 drugs”) list based on data provided by the U.S. Government.

Where does the DrugStats data come from?

All medication utilization data comes from the annual Medical Expenditure Panel Survey (MEPS), a survey conducted by the Agency for Healthcare Research and Quality (AHRQ) via the United States government. This data is publicly available on the MEPS website for free. In order for the ClinCalc DrugStats database to implement the MEPS data, basic data sanitization and standardization measures are necessary to maintain an accurate and reliable data set. Read more about the data set by clicking here. Continue reading

ClinCalc DrugStats 2021 Update – The Most Commonly Prescribed Drugs in the United States

ClinCalc has released this year’s update to the DrugStats database — “The Top 200 Drugs of 2019”. DrugStats provides free access to prescription drug utilization data estimates for the United States.  Using this data set, users can identify trends in prescribing practice and an official, reputable “top 200 drugs” list based on data provided by the U.S. Government.

Where does the DrugStats data come from?

All medication utilization data comes from the annual Medical Expenditure Panel Survey (MEPS), a survey conducted by the Agency for Healthcare Research and Quality (AHRQ) via the United States government. This data is publicly available on the MEPS website for free.  In order for the ClinCalc DrugStats database to implement the MEPS data, basic data sanitization and standardization measures are necessary to maintain an accurate and reliable data set.  Read more about the data set by clicking here. Continue reading

RapidASCVD: Calculate ASCVD scores seriously fast

RapidASCVD

ClinCalc is excited to announce a new iOS and Android app — RapidASCVD, a new mobile app to calculate ASCVD scores seriously fast.

Key Features of RapidASCVD

  • Accurately calculate 10-year ASCVD (atherosclerotic cardiovascular disease) risk per the AHA/ACC guidelines in as little as 10-15 seconds
  • Optimized mobile user interface to quickly obtain ASCVD estimates in the fastest amount of time possible
  • Extensively tested for accuracy with the pooled cohort equations as published in the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk
  • Risk estimate output is consistent with the 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease

Continue reading

RxHero for iOS: Educational Gaming of the Top 250 Drugs

Gamification - Motivate your studying by earning game points, ranks, and awards as you complete RxHero campaigns

ClinCalc is proud to announce a new iOS app — RxHero, an educational game for healthcare students and professional to learn the Top 250 Drugs.

Key Features of RxHero

  • Leverages simple gamification concepts (quest campaigns, in-game points, ranks) to motivate learners to continue to engage in studying
  • Uses the evidence-based ClinCalc DrugStats drug list top 250 drugs, which represents about 95% of all prescribed medications on the U.S. market
  • Adaptive, multi-modal learning to focus your attention on drug facts that are unlearned or difficult by presenting these drug facts in a variety of different ways (quiz questions, matching, and drug spelling)
  • Drug pronunciation is deeply integrated into the app so that you can hear the pronunciation of brand and generic names at any time while learning drug facts

Continue reading

Add Brand/Generic Drug Names to Microsoft Office Word with the ClinCalc DrugSpell Dictionary File

By default, Microsoft Word and other Office products do not contain brand and generic medication names within the spelling dictionary.  For healthcare providers who conduct medical writing, publications, or PowerPoint lectures, this can lead to embarrassing spelling errors that are not captured by the spell check.

Spell checking drug names like atorvastatin (Lipitor®) can be frustrating. Avoid spelling errors (and the dreaded red squiggly lines) with the ClinCalc DrugSpell dictionary file. It’s free!

Introducing the ClinCalc DrugSpell Dictionary File

Continue reading

The Top 200 Drugs of 2018

Top 200 Drugs of 2019 - The ClinCalc DrugStats Database

We’re proud to announce the annual update of the DrugStats database.  DrugStats provides free access to prescription drug utilization data estimates for the United States.  Using this data set, users can identify trends in prescribing practice and an official, reputable “top 200 drugs” list based on data provided by the U.S. Government.

Where does the DrugStats data come from?

All medication utilization data comes from the annual Medical Expenditure Panel Survey (MEPS), a survey conducted by the Agency for Healthcare Research and Quality (AHRQ) via the United States government. This data is publicly available on the MEPS website for free.  In order for the ClinCalc DrugStats database to implement the MEPS data, basic data sanitization and standardization measures are necessary to maintain an accurate and reliable data set.  Read more about the data set by clicking here.
Continue reading

Introducing the ClinCalc DrugStats Database and the 2017 Top 200 Drugs

ClinCalc DrugStats Database

We’re excited to announce the launch of our newest product at ClinCalc.com — the DrugStats Database!  This database provides free, web-based access to outpatient prescription utilization statistics for the United States encompassing more than 3 billion prescriptions annually.

Features of the ClinCalc DrugStats Database

By leveraging the database, users can identify trends and compare usage of approximately 500 different outpatient medications.  A few examples include: Continue reading

Apixaban Should Be the Preferred DOAC for Venous Thromboembolism and Nonvalvular Atrial Fibrillation

In the United States, there are currently four direct oral anticoagulants (DOACs).  All four DOACs are approved for the treatment of venous thromboembolism (VTE) and nonvalvular atrial fibrillation (NVAF), among other indications.1-4  Despite differences in pharmacology, pharmacokinetics, and clinical trial efficacy and safety data, current guidelines do not prefer a specific DOAC.  Given the lack of guideline-based recommendations for a particular DOAC, clinicians are frequently left without clear guidance of the most appropriate DOAC for a particular patient beyond the preferences of an insurance company or the availability of manufacturers’ coupons.  After a careful analysis of the existing data, a very strong case can be made to make apixaban (Eliquis) the preferred DOAC for both VTE and NVAF.

What is the role of DOACs versus warfarin in VTE and NVAF?

For the treatment of venous thromboembolism (VTE), the CHEST 2016 guidelines recommend any of the four DOACs over warfarin therapy for long-term anticoagulation therapy in patients without cancer (grade 2B).5  The guidelines do not specifically endorse any DOAC, although a table is provided that outlines factors that may influence the selection of a “preferred” anticoagulant.  For example, patients wanting to avoid parenteral therapy may prefer rivaroxaban or apixaban because dabigatran and edoxaban require five to ten days of parenteral therapy prior to initiation.

Continue reading

Calculate a “Fragility Index” to see which clinical trials BARELY meet statistical significance

ClinCalc.com's Fragility Index Calculator

When evaluating a clinical trial, readers often jump to the P value of the primary endpoint to determine whether the results of a trial are “statistically significant” or not. Although the P value is truly a continuous variable, the scientific community has been conditioned to disregard all results with P values ≥ 0.05, but to fully endorse any trials with a “statistically significant” P value less than 0.05.

Putting the debate and controversy about P values aside for the moment, as a reader, would you be less impressed with a study that changed from being statistically significant to insignificant if one single patient changed from not having the primary endpoint to having the primary endpoint? Especially in an era with a blind reliance on P values, the knowledge of the “fragility” or “robustness” of a study’s P value is another useful data point for readers to critically understand and analyze the results of a clinical trial.

The Concept of the “Fragility Index” for Clinical Trials

Continue reading