Add Brand/Generic Drug Names to Microsoft Office Word with the ClinCalc DrugSpell Dictionary File

By default, Microsoft Word and other Office products do not contain brand and generic medication names within the spelling dictionary.  For healthcare providers who conduct medical writing, publications, or PowerPoint lectures, this can lead to embarrassing spelling errors that are not captured by the spell check.

Spell checking drug names like atorvastatin (Lipitor®) can be frustrating. Avoid spelling errors (and the dreaded red squiggly lines) with the ClinCalc DrugSpell dictionary file. It’s free!

Introducing the ClinCalc DrugSpell Dictionary File

Continue reading

The Top 200 Drugs of 2019

Top 200 Drugs of 2019 - The ClinCalc DrugStats Database

We’re proud to announce the annual update of the DrugStats database.  DrugStats provides free access to prescription drug utilization data estimates for the United States.  Using this data set, users can identify trends in prescribing practice and an official, reputable “top 200 drugs” list based on data provided by the U.S. Government.

Where does the DrugStats data come from?

All medication utilization data comes from the annual Medical Expenditure Panel Survey (MEPS), a survey conducted by the Agency for Healthcare Research and Quality (AHRQ) via the United States government. This data is publicly available on the MEPS website for free.  In order for the ClinCalc DrugStats database to implement the MEPS data, basic data sanitization and standardization measures are necessary to maintain an accurate and reliable data set.  Read more about the data set by clicking here.The Top 200 Drugs of 2019 Continue reading

Introducing the ClinCalc DrugStats Database and the 2017 Top 200 Drugs

ClinCalc DrugStats Database

We’re excited to announce the launch of our newest product at ClinCalc.com — the DrugStats Database!  This database provides free, web-based access to outpatient prescription utilization statistics for the United States encompassing more than 3 billion prescriptions annually.

Features of the ClinCalc DrugStats Database

By leveraging the database, users can identify trends and compare usage of approximately 500 different outpatient medications.  A few examples include: Continue reading

Apixaban Should Be the Preferred DOAC for Venous Thromboembolism and Nonvalvular Atrial Fibrillation

In the United States, there are currently four direct oral anticoagulants (DOACs).  All four DOACs are approved for the treatment of venous thromboembolism (VTE) and nonvalvular atrial fibrillation (NVAF), among other indications.1-4  Despite differences in pharmacology, pharmacokinetics, and clinical trial efficacy and safety data, current guidelines do not prefer a specific DOAC.  Given the lack of guideline-based recommendations for a particular DOAC, clinicians are frequently left without clear guidance of the most appropriate DOAC for a particular patient beyond the preferences of an insurance company or the availability of manufacturers’ coupons.  After a careful analysis of the existing data, a very strong case can be made to make apixaban (Eliquis) the preferred DOAC for both VTE and NVAF.

What is the role of DOACs versus warfarin in VTE and NVAF?

For the treatment of venous thromboembolism (VTE), the CHEST 2016 guidelines recommend any of the four DOACs over warfarin therapy for long-term anticoagulation therapy in patients without cancer (grade 2B).5  The guidelines do not specifically endorse any DOAC, although a table is provided that outlines factors that may influence the selection of a “preferred” anticoagulant.  For example, patients wanting to avoid parenteral therapy may prefer rivaroxaban or apixaban because dabigatran and edoxaban require five to ten days of parenteral therapy prior to initiation.

Continue reading

Calculate a “Fragility Index” to see which clinical trials BARELY meet statistical significance

ClinCalc.com's Fragility Index Calculator

When evaluating a clinical trial, readers often jump to the P value of the primary endpoint to determine whether the results of a trial are “statistically significant” or not. Although the P value is truly a continuous variable, the scientific community has been conditioned to disregard all results with P values ≥ 0.05, but to fully endorse any trials with a “statistically significant” P value less than 0.05.

Putting the debate and controversy about P values aside for the moment, as a reader, would you be less impressed with a study that changed from being statistically significant to insignificant if one single patient changed from not having the primary endpoint to having the primary endpoint? Especially in an era with a blind reliance on P values, the knowledge of the “fragility” or “robustness” of a study’s P value is another useful data point for readers to critically understand and analyze the results of a clinical trial.

The Concept of the “Fragility Index” for Clinical Trials

Continue reading

How to Convert from IDMS to Non-IDMS Serum Creatinine Values

Historically, serum creatinine was analyzed from a blood sample using a method called alkaline picrate.  In addition to creatinine molecules, though, it also “counted” non-creatinine molecules that falsely elevated the resulting value by as much as 20%.  This assay method was used for decades in the development of creatinine clearance estimates, such as the Cockcroft-Gault method.

Within the past 10-15 year, however, laboratories have largely moved to a new assay called IDMS (isotope dilution mass spectrometry).  This method does not detect the non-creatinine molecules, which means that the IDMS value is often 10-20% lower than the more conventional assay.  Because older equations, like Cockcroft-Gault, were created and validated using a non-IDMS assay, this poses a problem for estimating creatinine clearance (a surrogate for glomerular filtration rate) when using an IDMS-based lab assay.

Converting from IDMS to non-IDMS (Conventional)

Continue reading

New Colistin (colistimethate sodium) Calculator

Pseudomonas aeruginosa nutrient agar

Colistin (in the form of colistimethate sodium, or CMS, in the United States) is an older, last-line agent for multidrug-resistant gram-negative infections.  Because of colistin’s complex pharmacokinetics and for historical reasons, there is a paucity of data regarding its dosing in patients with severe gram negative infections, particularly for those with concurrent renal dysfunction.

In one of the largest pharmacokinetic analyses of colistin to date, Garonzik et al. published a detailed analysis of CMS dosing in critically ill patients.  This analysis included dosing recommendations for patients with normal renal function, acutely changing renal function, intermittent hemodialysis (IHD), and continuous renal replacement therapy (CRRT).

ClinCalc is excited to announce our new colistin dosing calculator, which is based on the Garonzik pharmacokinetic recommendations.  This calculator was developed in coordination with Julie Ann Justo, PharmD, MS, BCPS, AAHIVP — an Assistant Professor at the South Carolina College of Pharmacy who specializes in infectious diseases and HIV pharmacotherapy. Continue reading

It’s Time to Say “Goodbye” to Vitamin D2 (ergocalciferol)

Prescription bottle of ergocalciferol (Vitamin D2) 50,000 IU

In the United States, vitamin D supplementation is primarily available as vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol). Although these two have historically been considered interchangeable and equipotent, the current body of literature strongly supports the preference of Vitamin D3 (cholecalciferol) over D2 (ergocalciferol).

Vitamin D2 versus Vitamin D3

Vitamin D3 (cholecalciferol) is produced by the human body in response to sunlight and is also available through dietary sources, such as fish. In contrast, vitamin D2 (ergocalciferol) is not produced in the human body, but is created by exposing certain plant-derived materials to ultraviolet light.

Continue reading

Vancomycin Calculator Update – End of Infusion Peak (EoIP)

We’re releasing a major update to the calculation for our popular vancomycin calculator today. Briefly, the new update implements more advanced calculations when adjusting a vancomycin dose based on a trough level.

Drug Elimination during Vancomycin Infusion

When adjusting vancomycin based on a trough level, pharmacokinetic textbooks recommend estimating a vancomycin peak level using the following equation: Continue reading

ICU Trials Passes 100 Landmark Studies

Summarized landmark critical care trials on your mobile device

ClinCalc.com is proud to announce that ICU Trials by ClinCalc, a mobile application that summarizes landmark critical care trials, has surpassed 100 studies in the app database!

With our most recent update on April 18th, the following recent and historic landmark trials were added:

  • MIDEX (2012): Dexmedetomidine vs. midazolam for mechanical ventilation
  • PAC-Man (2005): Efficacy of PA catheters in ICU patients
  • FEAST (2011): Fluid boluses in African children with severe infection
  • VSE (2013): Vasopressin, steroids, and epinephrine during cardiac arrest
  • MOPETT (2012): Alteplase for moderate PE
  • Brochard (1994): T-piece, SIMV, or PSV for ventilator weaning

Continue reading